
Transportation Committee October 15, 2025

On-Table Item(s)

Item Type	Date	No.			
Report	October 15, 2025	6.2	2025 Annual Report – Transportation Committee	Received after agenda distribution	
Memo	October 15, 2025	6.4	Traffic Signal System Presentation/Discussion	Received after agenda distribution	
Presentation	October 15, 2025	6.4	Traffic Signal System Presentation/Discussion	Received after agenda distribution	
Memo	October 15, 2025	6.5	Collisions in Port Moody	Received after agenda distribution	
Presentation	October 15, 2025	6.5	Collisions in Port Moody	Received after agenda distribution	

City of Port Moody Report/Recommendation to Council

Date: November 25, 2025 Submitted by: Transportation Committee

Subject: 2025 Annual Report – Transportation Committee

Purpose

To provide a report on the activities of the 2025 Transportation Committee.

Recommended Resolution(s)

THAT the report dated November 25, 2025, from the Transportation Committee regarding 2025 Annual Report – Transportation Committee be received for information;

AND THAT the 2026 Transportation Committee be asked to review this report and bring forward its annual Work Plan in early 2026.

Committee Mandate

The purpose of the Transportation Committee is to provide advice and recommendations on traffic and transportation issues and priorities, and related matters as detailed below and within the terms of the Council Committee Systems Policy and the Council Strategic Plan.

The Committee provides advice and recommendations on the following:

- traffic safety;
- accessibility;
- traffic operational issues;
- sustainable transportation modes including the reduction of greenhouse gas emissions;
- traffic calming and place making;
- parking needs and systems; and
- other areas identified by the committee with approval from the Council.

Meeting and Attendance

The Transportation Committee met monthly February 2025 through November 2025, with the exception of August and December, due to summer and winter break. All nine (9) meetings were held electronically.

Councillor Amy Lubik was appointed as Chair and Councillor Diana Dilworth as Vice-Chair for the 2025 term. The following members, representing a diverse range of knowledge and experience relevant to the Transportation Committee were appointed:

- Jonathan Baker (Resigned September 1, 2025)
- Trevor Dore
- Steven Gragicevic
- Mitchell Eve
- Andrew Hartline
- Eric Hedekar
- Carissa Konesky
- Jeff Lynch
- Rob McCloskey
- Kate Woodchuk
- Zee Samnani
- Sheila van As

Nobinur Rahman, Transportation Engineer, and Jeff Moi, General Manager of Engineering and Operations, served as the primary staff liaisons to the Committee. Riley Dowling, Janis Knaupp, and Adam Shroff served as the Legislative Services Coordinators.

Key Activities and Work Plan

The 2025 Transportation Committee Work Plan was approved by Council on March 11, 2025. The following are the key activities that were undertaken in 2025 by the Transportation Committee (a complete list of motions from 2025, along with the status of each, is included in **Attachment 1**).

Moray Street Traffic Calming Project – Permanent Implementation

The Committee received a presentation on the Moray Street Traffic Calming Project update. The Committee provided feedback on the design considerations as the project progresses to the detailed design stage.

<u>Upper Noons Creek Drive Traffic Calming Project - Pilot</u>

The Committee received a presentation and provided feedback on the Upper Noons Creek Drive Traffic Calming Project pilot design concept. Staff also provided a summary of the public engagement results and the draft traffic calming options to improve safety along this corridor.

<u>Traffic Calming Initiatives Prioritization</u>

The Committee received a presentation on the Neighbourhood Traffic Calming Policy, including how locations for studies and projects are evaluated and prioritized. Upcoming priorities for traffic calming were reviewed and endorsed.

Speed Hump Program Implementation Location Review

The Committee reviewed and endorsed the proposed locations for speed hump installations through the 2025 Speed Hump Program. The locations were prioritized based on the Neighbourhood Traffic Calming Requests and Candidates list, with sites adjacent to current development projects deferred.

Cumulative Development Traffic Model Update

The Committee received a presentation providing an update on the City's Cumulative Development Transportation Model (CDTM). Staff also presented a functioning PM model of the City's main corridors, informed by current Official Community Plan (OCP) policies and future potential development plans, with a particular focus on Moody Centre TOD and Flavelle Oceanfront.

Traffic Impact Assessment and Transportation Demand Management Policies

The Committee reviewed and endorsed the policy on Transportation Demand Management (TDM) requirements for new developments to promote sustainable and multimodal transportation and reduce reliance on private motor vehicles. Staff also presented the updated requirements for Traffic Impact Assessments (TIA) for new developments.

Committee meets Traffic Review & Coordination Working Group

The Committee received a presentation on the Traffic Review and Coordination (TRAC) Working Group. Staff presented background information on TRAC and how the group works collaboratively to review traffic and transportation complaints and concerns, and to prioritize enforcement locations, including data collection.

Active School Travel Plan Update

The Committee received an update on active school travel planning, which encourages students, parents, and guardians to walk, bike, or roll to school to increase physical activity and improve safety and environmental conditions around schools. Staff also presented survey results and findings, including proposed road safety improvements for the recent Active School Travel Plan at École Glenayre Elementary School.

Transportation Accessibility Program

The Committee received a presentation summarizing the Transportation Accessibility Program and provided feedback. Staff also provided an overview of planned initiatives for this year and a summary of other ongoing projects that support transportation accessibility.

Cycling Network and Current Projects

The Committee received a presentation summarizing the different types of bicycle facilities using TransLink's classification system. Staff also provided information on how the City decides on different types of cycling projects, including some current and planned projects. The Committee also received a presentation from Brian and Winter Steeves, a father and son from College Park, on improving active transportation access in the College Park area.

Parking Demand Management - Pay Parking Update

The Committee received a presentation providing an update on pay parking, including revenue generation and the pay parking data dashboard. Staff also presented the issues, concerns, and complaints received from residents regarding the pay parking implementation.

TransLink's 2023 Trip Diary Survey Updated

The Committee received a presentation summarizing TransLink's 2023 Trip Diary Survey. Staff also presented results showing how Port Moody residents travel – including trip frequency, distance, timing, destinations, remote work trends, and mode share.

Barnet Hwy/loco/Dewdney Trunk Rd Intersection – Monitoring Update

The Committee received a presentation and provided feedback on the issues, analysis, findings, and recommendations from the post-pilot implementation conducted for Barnet Highway between loco Road and Dewdney Trunk Road. Staff also presented traffic operation concerns, before-and-after traffic data analysis, and potential recommendations for short-term and long-term improvements.

Barnet Hwy/View St Intersection Improvements

The Committee reviewed and provided feedback on the Barnet Highway and View Street Intersection Traffic Safety Review. Staff presented a review of existing conditions, including roads, lane configurations, traffic control measures, and pedestrian and cycling facilities at the intersection. Staff also presented observed traffic violations, potential conflicts, and safety concerns during three typical weekday AM and PM peak periods and provided high-level recommendations for improvements and/or mitigation measures addressing safety-related deficiencies.

HUB Presentation / Discussion

The Committee received an update from the Tri-Cities HUB Local Committee on cycling improvements and the Committee's next priorities in Port Moody.

Traffic Signal System Presentation/Discussion

The Committee received a presentation regarding the technology and equipment used at signalized intersections. Staff also presented recent upgrades to existing equipment and the installation of new technology at several intersections.

Collisions in Port Moody

The Committee received a presentation on the 2015–2024 Insurance Corporation of British Columbia (ICBC) collision database, which provided background information on the nature and scale of fatal and injury collisions in Port Moody. Staff also presented where and when these collisions occur, the road users involved — particularly vulnerable road users such as pedestrians and cyclists — and the predominant collision types and contributing factors (e.g., time of day, month, day of week, and intersection movements).

Port Moody Police Department Presentation / Discussion

The Committee received a presentation from the Port Moody Police Department on education and enforcement related to traffic violations, including statistics on traffic tickets and traffic-related offences.

ICBC Presentation / Discussion

The Committee received a presentation from an ICBC representative on road safety in Port Moody. The presentation covered ICBC's road safety programs, student education, driver licensing education, pedestrian safety campaigns, and road improvement initiatives.

Outstanding Matters

The Transportation Committee's Annual Work Plan included a few of items that were not addressed in 2025:

- St Johns Street Redesign Phase 2;
- Fraser Health Presentation;
- · Bedwell Bay Road Transportation Improvement; and
- loco Road Utility Rehabilitation Project Design Review.

Suggested Focus Areas for Next Year

Subject to Council's direction, the following focus areas should be included in the Committee's Work Plan for 2026:

- Master Transportation Plan Update Implementation Strategies;
- St. Johns Street Redesign Phase 2 Next Steps;
- Bedwell Bay Road Transportation Improvement; and
- Ioco Road Utility Rehabilitation Project Update.

Council Strategic Plan Goals

The recommendations in this report align with the following Council Strategic Plan Goal(s):

- Strategic Goal 1.3 Lead with good governance;
- Strategic Goal 2.2 Advance climate change mitigation and adaptation;
- Strategic Goal 3.2 Provide safe, efficient, and accessible transportation options; and
- Strategic Goal 3.3 Enhance community wellbeing.

Attachment

1. 2025 Transportation Committee Resolutions.

Report Authors

Nobinur Rahman Transportation Engineer

Riley Dowling Legislative Services Coordinator

Janis Knaupp Legislative Services Coordinator

Jeff Moi

General Manager of Engineering and Operations

Attachment 1 - 2025 Transportation Committee Resolutions

The following table contains a summary of all motions made at the 2025 Transportation Committee meetings, with the exception of motions regarding the adoption of minutes, adoption of agendas, extending a meeting beyond two hours, to go into a closed meeting, and to grant leaves of absence.

Month	Resolution	Status
February	TC25/003 THAT the 2025 Transportation Committee Endorses the Draft Work Plan	
March	TC25/006 THAT the Transportation Committee recommends:	
	THAT the Transportation Committee endorses the Upper Noons Creek Drive Calming Pilot Project with incorporation of the Transportation Committee feedback.	
March	TC25/007 THAT the Transportation Committee recommends:	
	THAT installation of speed humps on Aspenwood Drive (East Road to Forest Parkway West); Prince Street (Union Street to Cambridge Way); Parkside Drive (Eagle Drive to Eagle Pass) through the 2025 Speed Hump Programs be endorsed.	
May	TC25/012 THAT the Committee table further discussion regarding the topic until the next meeting.	
	(Regarding Glenayre, Cycling from a Kids perspective)	
May	TC25/013 THAT the Transportation Committee recommends:	
	THAT the policy on Transportation Demand Management (TDM) Requirements, intended to promote sustainable and multimodal transportation and reduce	

	reliance on private motor vehicles in new developments, be endorsed.	
June	TC25/016 Whereas school drop-off areas have been consistently highlighted as problem areas for traffic incidents; and	
	Whereas habits of active travel as a family units instill safety behaviours and social norms of active transportation; and	
	Whereas our long-term infrastructure and growth plans as well as our climate action pledges have identified mode-shift to active transportation as a must-do priority; and	
	Whereas prior active-transportation infrastructure near schools (Moody Elementary and PMSS) has shown to increase mode shift for daily transportation to those schools; and	
	Whereas staff have planned multiple mode- shift initiatives for school areas throughout town, but identified a lack of funding for such initiatives;	
	THAT council direct staff to include in the 2025-2026 budget and 5 year financial plan allocation of the needed funding to implement active transportation infrastructure projects around school zones as well as non-infrastructure programs, such as but not limited to safe and active school travel planning initiatives, to encourage modeshift at schools.	
October	TC25/0XX THAT the Transportation Committee recommends:	
	THAT Council direct staff to conduct a comprehensive road safety assessment that integrates data analysis, site evaluations, and stakeholder engagement; identify, screen, and rank priority locations for safety improvements; develop recommended	

countermeasures with planning-level cost estimates; and report back with an implementation plan for inclusion in the City's next five-year Capital Program.	
---	--

Memorandum

To:	Transportation Committee	File #:	11-5460-03-4/2020-01
CC:	Jeff Moi, General Manager of Engineering and Operations	Date:	October 15, 2025
From:	Vinh Chung, Senior Engineering Technologist Nobinur Rahman, Transportation Engineer		
Subject:	Traffic Signal Technology Update		

This memo provides the Transportation Committee with an update regarding the technology and equipment used at signalized intersections.

The City operates 38 traffic signals. All traffic signals are connected to a centralized control system, and where signals are in close proximity, or along corridors (such as St. Johns, Clarke/Murray, and loco Road), traffic signals are coordinated to improve traffic efficiency. In 2025, two new traffic signals were activated:

- St. Johns Street at Golden Spike Way
- St. Johns Street at James Road

The City recently upgraded existing equipment and installed new technology at several intersections. These upgrades include the addition of Miovision 360 Smart camera, Pan-Tilt-Zoom cameras, audible pedestrian pushbuttons, and GPS pre-emption system for Port Moody Fire Rescue.

- 1. The Miovision 360 Smart camera, a key addition to our technology, enables vehicle detection using video through a fisheye lens camera. It not only collects data related to vehicles, cyclists, and pedestrians at the intersection but also offers operation and safety features such as travel time data, red light infractions, and adaptive traffic signal management. While the camera provides video recording, this feature has been turned off due to privacy concerns.
- 2. Similar to the Miovision camera, Pan-Tilt-Zoom cameras are installed at key intersections to view live traffic operations only. There is a recording function available but this is turned off due to privacy concerns.
- 3. Installed audible pedestrian pushbuttons in City centres.
- 4. GPS pre-emption has been installed on the St Johns Street, Ioco Road, and Murray Street corridors to assist with Port Moody Fire Rescue response time during emergency response. The pre-emption system creates a green wave for PMFR in the direction of travel while clearing out queued traffic before arriving the intersection. This significantly reduces the time it takes for emergency vehicles to reach their destination, potentially saving lives.

As technology continues to evolve, the City is committed to evaluating new technologies for consideration in the traffic signal system.

PORT MOODY
CITY OF THE ARTS

Item 6.4

<u>Traffic Signal Optimization and Coordination Along St Johns Street</u>

We are undertaking a traffic signal optimization and coordination study along St. Johns Street. The study also includes several intersections along Barnet Highway, Moody Street, and Ioco Road, for a total of 17 existing signalized intersections. This initiative aims to improve traffic flow, reduce congestion, and enhance safety for all users by updating signal timing plans based on best practices and by using modelling tools such as Synchro and SimTraffic.

As part of this study, we reviewed existing signal timings and conducted site observations to identify locations requiring improvement. We started by conducting a detailed review of any updated industry guidelines (ITE, TAC, and CoV) for base signal timings, including minimum green times, vehicle clearance intervals (amber and all-red), and pedestrian crossing times. This review helped establish best practices and set standards to guide future updates or new signal installations.

Using these standards, we optimized signal settings to balance the needs of vehicles and pedestrians at each intersection and modelled the proposed timings using microsimulation software to validate their effectiveness. Once optimized, we developed coordinated signal plans for the AM, midday, PM peak, and off-peak periods, considering priorities such as queue clearance.

The new signal timing plans for St Johns Street corridor will be implemented for the week of October 20, 2025. Staff will observe and adjust accordingly to minimize delays.

Figure 1: Intersections considered in the traffic signal optimization and coordination study along St. Johns Street

S. No.	Study Intersections	
1	Barnet@ViewSt	Inlet Park
2	StJohnsSt@AlbertSt	
3	StJohnsSt@KyleSt	
4	StJohnsSt@GrantSt	Come X
5	StJohnsST@MoodySt	INLET CENTRE 2 110 Guildford Dy
6	MoodySt@ClarkeSt	
7	MurraySt@MoodySt	
8	StJohnsSt@HughSt	Murra 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
9	StJohns@WilliamsSt	Windlest Winds Clarke St. B Moody Centre Station Inlet Centre Station
10	StJohnsSt@BullerSt	PANON AND AND AND AND AND AND AND AND AND AN
11	StJohns@James	
12	StJohnsSt@MoraySt	
13	StJohns@GoldenSpike	St George St October 1997
14	StJohnsSt@Dewdney	Hope St. Hope St.
15	StJohnsSt@locoRd	Henry St Jane St Jane St
16	loco@Suter	lyy/Strily St
17	loco@Murray	Oast's h

Introduction

Vinh Chung, ASc. T – Senior Engineering Technologist

Responsibilities

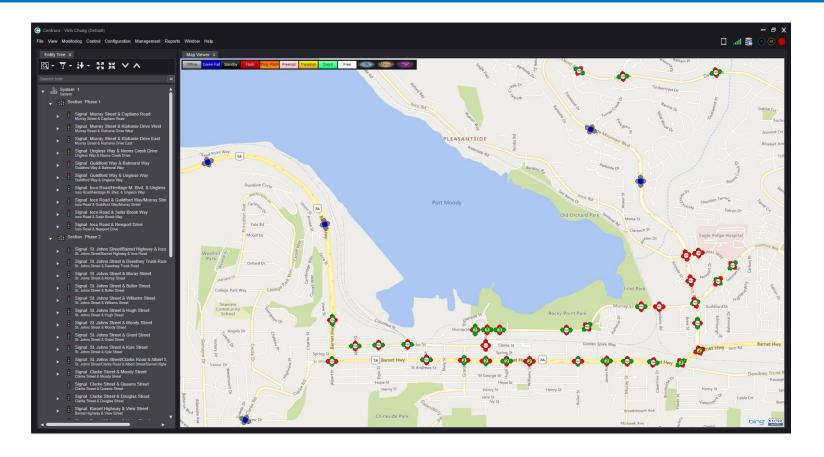
Maintenance and Operations – traffic signals, roadway traffic signs, road markings, street lights, BCHydro street lights.

Capital Projects – Traffic studies, including Active School Travel Planning program (Learn2Ride, Go By Bike Week), traffic data collections, traffic calming projects.

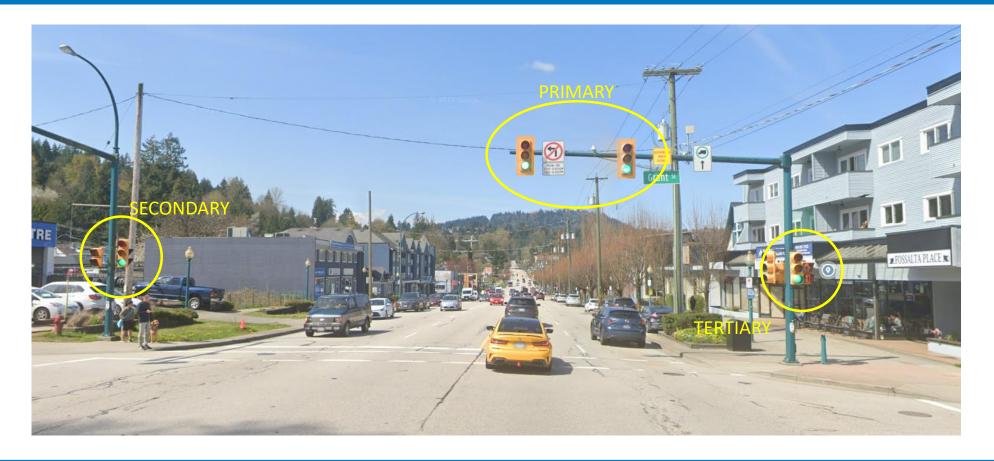
Traffic Signal Technology

38 full traffic signals

2 signal to be commissioned via development at Seaview and Clarke Road and Queens and St Johns


Centracs – central traffic signal system

Live monitoring, Real-time alerts


5 pedestrian signals

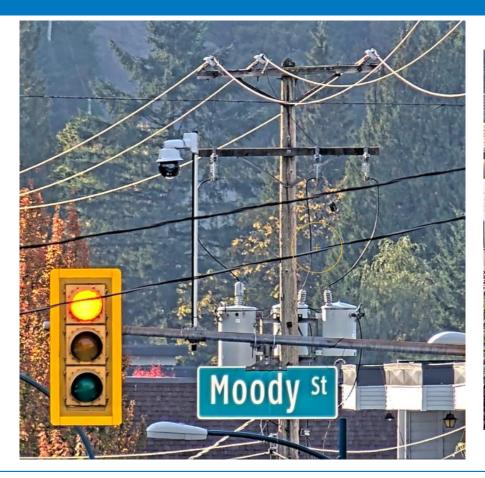
Traffic Signal – Central System

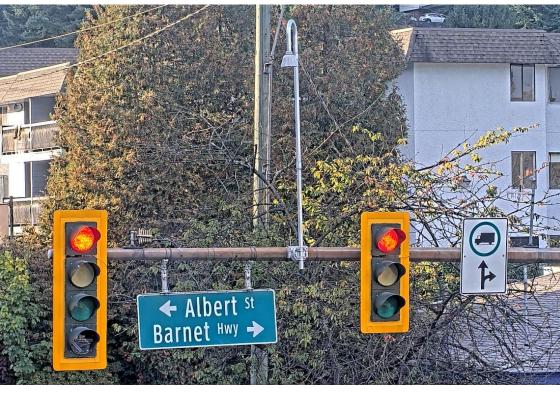
Traffic Signal – Signal Heads

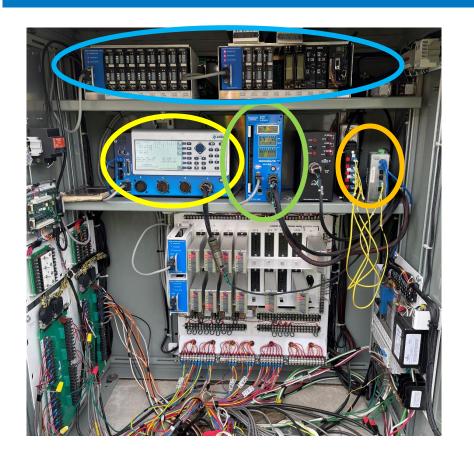
Traffic Signal – Pedestrian Heads

Traffic Signal – Pedestrian Push Buttons (Non-Audible Pushbutton Sounds vs Audible Pushbutton Sounds (APS))

NON-APS APS


Traffic Signal – Vehicle Actcuation (Conductance Loops vs Video Detection)




Traffic Signal – PTZ and Miovision

Traffic Signal - Cabinet

- Traffic controller
- MMU or CMU (Malfunction/Conflict Monitoring Unit)
- Detectors
- Switch (Communications)

TC - On-Table 2025 10 15

ACTIVATION METHOD

PRE-EMPTION TIME (s)

TERMINATE ALL PHASES

DELAY TIME (s)

Traffic Signal – Signal Timing

SIGNAL TIMING SHEET

CONTROLLER & CABINET TYPE	COBALT							MAJ	OR R	OAD				BARNET HIGHWAY										
SEQUENCE	NEMA DUAL RING								MINOR ROAD IOCO ROAD						AD									
DRAWING NUMBER & REV									MAJOR ROAD DIRECTION EAST-WEST															
PREVIOUS STS DATE	2024-1	10-31								LOCATION						PORT MOODY								
PHASE NUMBER		1	Т		2	Т		3			4			5			6			7		Τ	8	i
PHASE SETTINGS	(ON	一	(ON	\top		ON			ON			OFF			ON			OFF			OF	F
DESCRIPTION	ST J	JOHNS	s	BAF	RNET		IOCO		IOCO		IOCO					ST JOHNS								
	E	BLT		V	VB			NB			S B						ЕВ							
PRE-EMPTION & PRIORITY	EMER	RGENC'	Y	EMER	RGENCY	,	EME	RGEN	ICY	EM	ERGEN	ICY				EM	ERGE	NCY				+		\neg
SEQUENCE(S)	PRE-EM	MPTION	I#4 P	RE-EN	IPTION	#3 PI	RE-E	MPTIC)N #5	PRE-	EMPTI	ON #6				PRE-	EMPTI	ON #4						
OVERLAPS	(OLA									OLA													
MINIMUM GREEN		6.0		6	6.0			6.0			6.0						6.0							
PASSAGE		5.0		3	3.0			3.0			2.0						3.0							
YELLOW		3.5		3	3.5			3.5			3.5						3.5							
ALL RED		2.5			3			3			3						3							
TIMING PLAN 1 - MAX 1 2 3	25			40		-	10	П		20						40					T			
TIMING PLAN 2 - MAX 1 2 3																								
WALK TIME					5						5						5							
PED CLEAR (FDW TIME)					17						29						17							
RECALL																								
COORDINATION ON PHASE				X	XXX												XXXX	(
FIRST GREEN DISPLAY					XXX												XXXX	(
INTERSECTION FLASH	RED			R	ED		F	RED			RED						RED							
AWF TIME						\perp																		

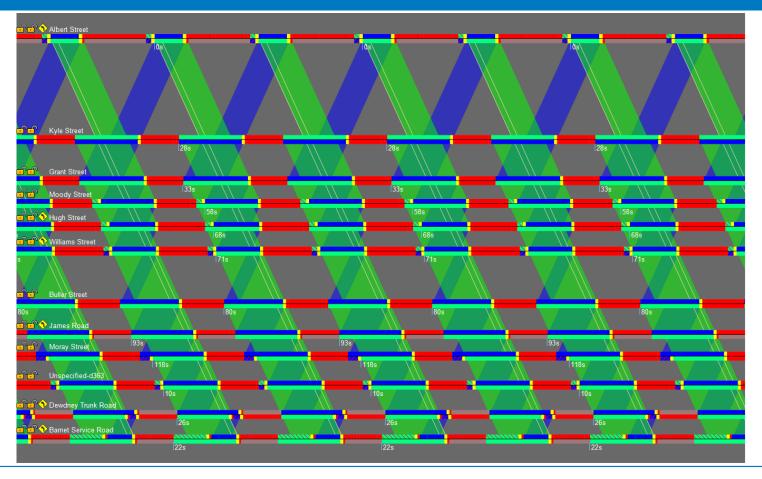
TYPE LOOPS TIME (s)

NONE

OPERATING COMMENTS

POSTED SPEEDS (km/h)	BARNET HIGHWAY - EB WB	50	30	IOCO ROAD - NB SB	50	50
AWF DISTANCES (m)	BARNET HIGHWAY - EB WB			IOCO ROAD - NB SB		
APPROACH GRADES (%)	BARNET HIGHWAY - EB WB			IOCO ROAD - NB SB		

YES - PE 4

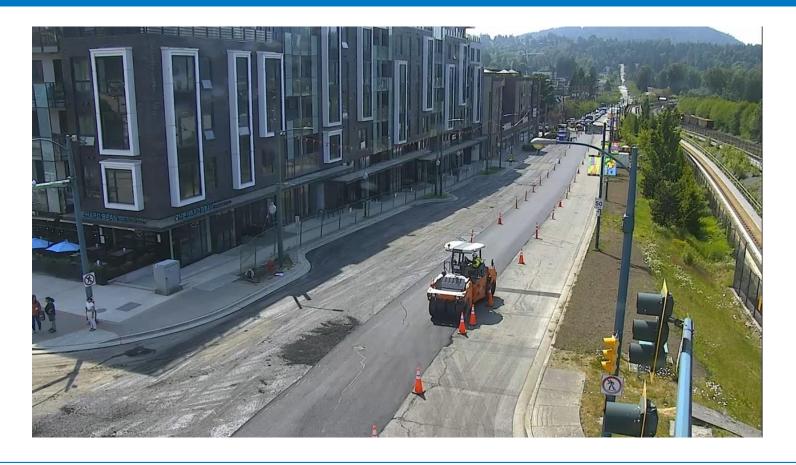

PED WALK SPEED (m/s) 1.0 GAP PAIRS (SGO)

Pedestrian Crossing Speeds

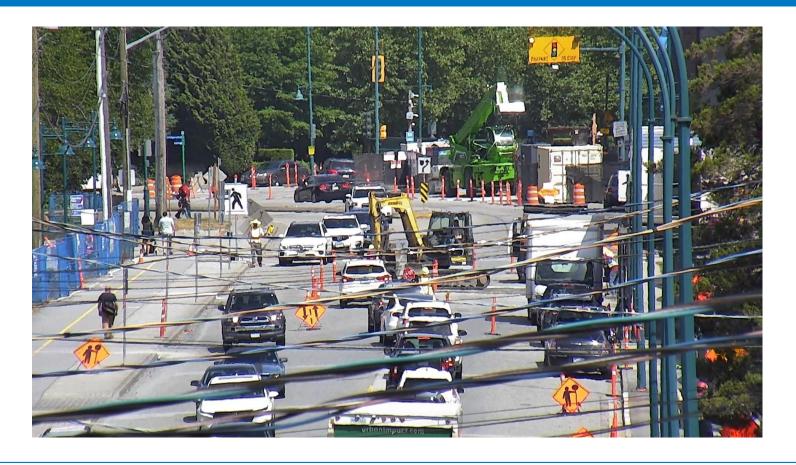
- 0.8 m/s (where 20% of users are mobility users)
- 0.9 m/s (where 20% of users are seniors, children)
- 1.0 m/s (general population)

Leading Pedestrian Intervals (LPI / Advanced Walk)
GPS Pre-emption

Traffic Signal – Coordination



Causes of Traffic Congestion



Causes of Traffic Congestion

Causes of Traffic Congestion

TC - On-Table 2025 10 15

Memorandum

To:	Transportation Committee	File #:	11-5460-06/2001								
CC:	Jeff Moi, General Manager of Engineering and Operations	Date:	October 15, 2025								
From:	Nobinur Rahman, Transportation Engineer										
Subject:	Fatal and Serious Injury Collisions in Port Moody, 2015–2024										

City staff reviewed the 2015-2024 Insurance Corporation of British Columbia (ICBC) collision database to provide background information to the Transportation Committee on the nature and scale of fatal and injury collisions in Port Moody. The review focused on where and when these collisions occur, the road users involved, particularly vulnerable road users (pedestrians and cyclists), and the predominant collision types and contributing patterns (e.g., time of day, month, day of week, and intersection movements). This memo summarizes the key findings from that analysis.

About the ICBC Database

ICBC classifies collisions into three levels of severity: fatal, injury, and property damage only (PDO). Fatal crashes are crashes in which at least one involved road user dies within 30 days of the collision (following injuries sustained in a motor-vehicle crash). Injury crashes are crashes in which a driver, passenger, pedestrian, or cyclist is injured. PDO incidents involve only material (property) damage. Collisions involving pedestrians or cyclists are typically more severe and are therefore more likely to be classified as injury or fatal; however, some pedestrian- or cyclist-involved collisions may result only in property damage with no injuries or fatalities.

The ICBC databases are publicly available online in a limited format and can be accessed here.

Collision Frequency Statistics

The ICBC database contains information on 14,395 total crashes in Port Moody for the 2015–2024 period. Of these collisions, 12,309 resulted in property damage only (PDO), 2,084 resulted in injury, and 2 were fatal. Figure 1 shows the number of collisions from 2015 to 2024, broken down by severity: property damage only, injury, and fatal. Overall, collisions peaked in 2017 with 1,685 total incidents and dropped sharply in 2020 to 1,024, likely due to reduced travel during that period. Since then, collisions have gradually increased, reaching 1,507 in 2023 before a slight decline to 1,421 in 2024.

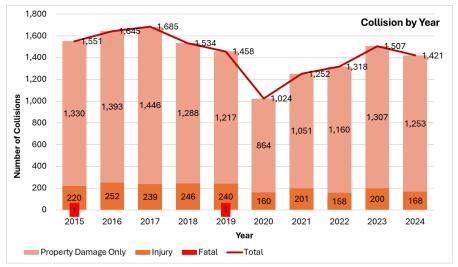
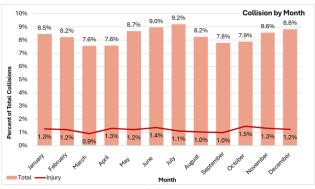
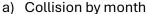
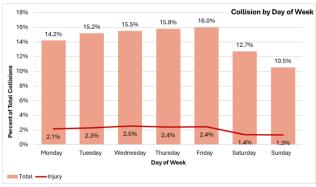
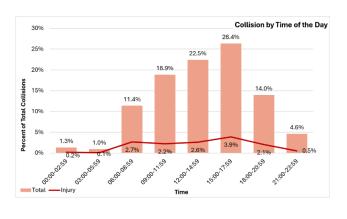
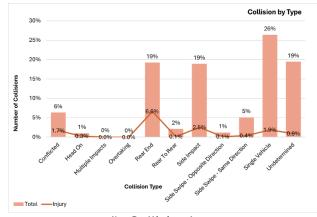





Figure 1: Number of Collisions in Port Moody by Severity, 2015–2024

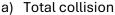

Figure 2 shows patterns in collisions by month, day of the week, time of day, and type. Collisions are relatively steady across months, with slightly higher frequencies in May to June. Weekday collisions are more common than weekend ones, peaking on Fridays (16%) and lowest on Sundays (10.5%). By time of day, collisions are heavily concentrated during afternoon rush hours (3:00–6:00pm), followed by the late morning to early afternoon period (12:00–3:00pm), suggesting strong links to commuter traffic patterns. Injury collisions generally follow similar trends to total collisions. In terms of the collision type, the most common types are single-vehicle crashes, rear-end collisions, and rear-to-rear collisions.

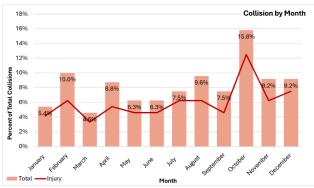


b) Collision by day of week

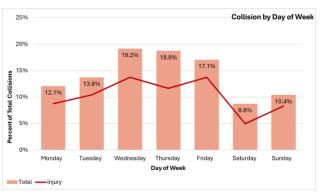
c) Collision by time of the day

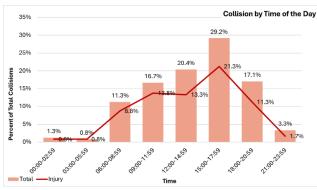
d) Collision by types


Figure 2: Temporal Distributions of City-wide Collisions


Vulnerable Road User (VRU) Collision Frequency

Compared to overall collisions, Vulnerable Road User (VRU), pedestrians and cyclists, collisions show lower overall frequencies but similar temporal patterns. As shown in Figure 3, the number of VRU collisions fluctuated between 16 and 29 incidents annually from 2015 to 2024, with a noticeable dip in 2021 (18 collisions) and a recent decline in 2024 (16 collisions).


By month, VRU collisions occur most frequently in October (15.8%), followed by February (10.0%) and December (9.2%), indicating higher risks during darker or wetter months. Collisions are more common on weekdays, peaking midweek on Wednesday (19.2%) and Thursday (18.8%), possibly reflecting higher commuting activity. By time of day, incidents are concentrated during afternoon and early evening hours (3:00–6:00pm), when both pedestrian and cycling traffic are typically at their highest, aligning with daily travel and school or work commute patterns.



b) Collision by month

c) Collision by day of week

d) Collision by time of the day

Figure 3: Temporal Distributions of City-wide VRU Collisions

Vulnerable Road User (VRU) in Serious Injury and Fatal Collisions

Figure 4 shows road-user involvement in all crashes vs. serious injury/fatal crashes. Overall (n=14,395), nearly all collisions involve motor vehicles (98.3%), with pedestrians (1.1%) and bicyclists (0.5%) making up a small share. But in serious injury/fatal crashes (n=2,086), pedestrians (5.6%) and bicyclists (2.6%) account for a much larger proportion, while vehicles drop to 91.8%, showing that VRU collisions, though fewer, are far more likely to result in severe outcomes.

All Collisions (n=14,395)

Vehicles 98.3%, pedestrians 1.1%, bicyclists 0.5%

Serious Injury/Fatal Collisions (n=2,086)

Vehicles 91.8%, pedestrians 5.6%, bicyclists 2.6%

Another way of looking at the same data provides a rough sense of the risk of serious injury or death if various types of travelers are involved in collisions, as shown in Figure 5 below. Nearly 3 in 4 vehicle–pedestrian collisions (72.7%) and about 7 in 10 vehicle–bicyclist collisions (69.6%) are serious, compared with only ~1 in 8 vehicle–vehicle crashes (13.3%). In short, when a crash involves a person walking or cycling, it's far more likely to be severe.

Figure 5: Higher chance of serious injury or death amongst pedestrians or bicyclists involved in collisions with vehicles

Most VRU injury collisions occur at intersections (78.5%). Among those intersection crashes, the majority happen while the person is crossing with a signal, in a marked crosswalk, or on the sidewalk/bike lane (82.1%), and about 62.4% involve a conflict with a left- or right-turning vehicle – highlighting turning movements at intersections as a key risk. These findings are summarized in Figure 6 below.

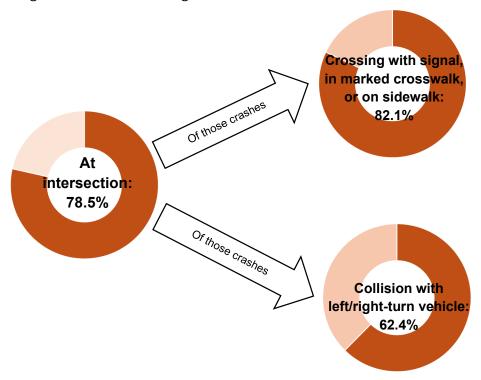


Figure 6: Locations of VRUs involved in serious injury or fatal collisions

This memo outlines the need for a Citywide Road Safety Plan, including a review of traffic and collision data, screening to identify priority locations, field assessments of selected sites, development of recommended countermeasures with planning-level cost estimates, and a ranked implementation list for inclusion in the City's next five-year Capital Program. If the Transportation Committee supports this direction, the following motion is suggested:

THAT the Transportation Committee recommends:

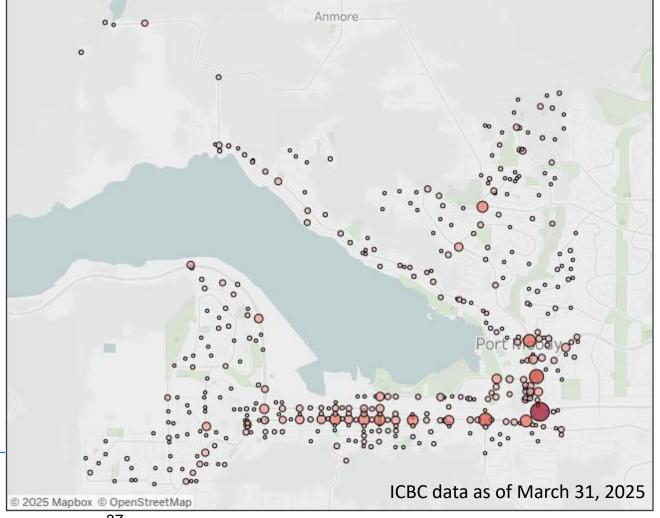
THAT Council direct staff to conduct a comprehensive road safety assessment that integrates data analysis, site evaluations, and stakeholder engagement; identify, screen, and rank priority locations for safety improvements; develop recommended countermeasures with planning-level cost estimates; and report back with an implementation plan for inclusion in the City's next five-year Capital Program.

TC - On-Table 2025 10 15

TC - On-Table 2025 10 15

About the ICBC Database

ICBC classifies collisions into three levels of severity:

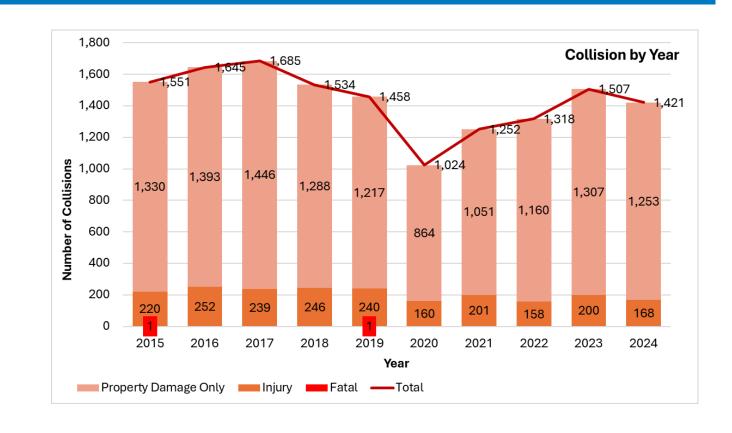

- Fatal crashes in which at least one involved road user dies within 30 days of the collision (following injuries sustained in a motor-vehicle crash)
- Injury crashes are crashes in which a driver, passenger, pedestrian, or cyclist is injured
- Property Damage Only (PDO) involves only material (property) damage.

About the ICBC Database Contd.

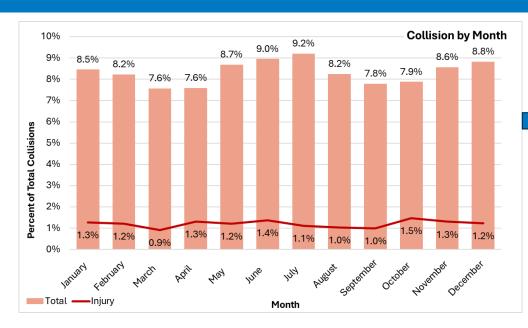
ICBC databases are publicly available online in a limited format.

 Data includes last five years only.

Link to the dashboard: Lower Mainland Crashes | Tableau Public

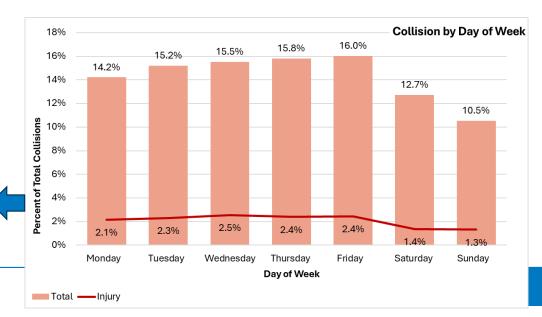

Collision Frequency Statistics in Port Moody

Total collisions (2015-2024): 14,395

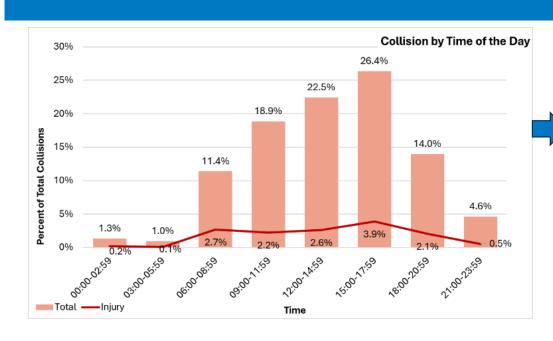

 Property damage only (PDO):12,309

• Injury: 2,084

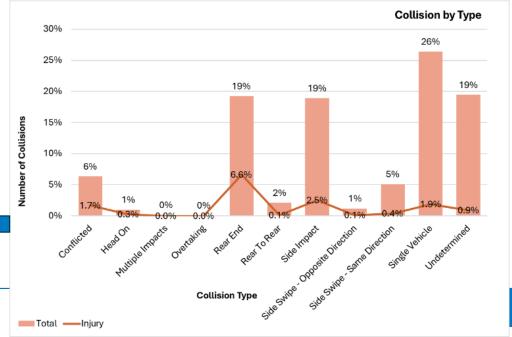
• Fatal: 2

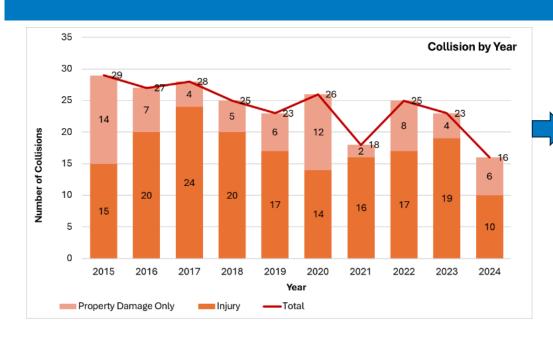

Temporal Distributions of City-wide Collisions

Weekday collisions are more common than weekend ones


Collisions are relatively steady

across months, with slightly higher frequencies in May to June

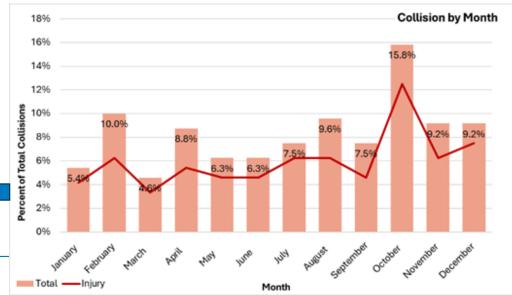

Temporal Distributions of City-wide Collisions Contd.


Most common types are single-vehicle crashes, rear-end collisions, and rear-to-rear collisions

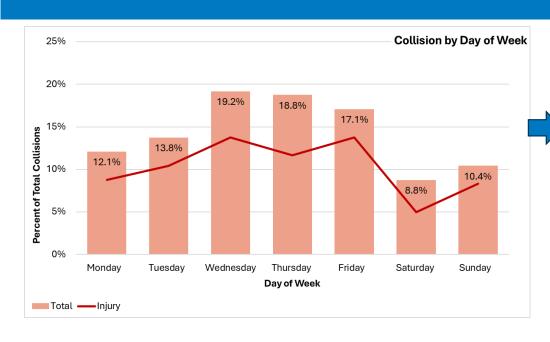
PORT MOODY
CITY OF THE ARTS

Collisions are heavily concentrated during afternoon rush hours (3:00–6:00pm), followed by the late morning to early afternoon period (12:00–3:00pm)

Vulnerable Road User (VRU) Collision Frequency

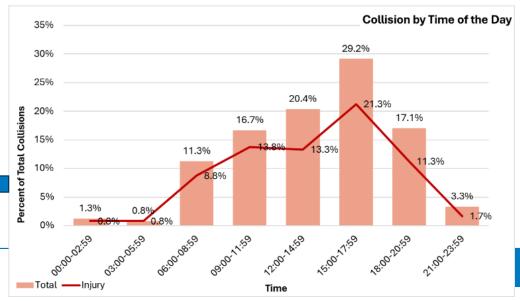


VRU collisions occur most frequently in October, followed by February and December


PORT MOODY CITY OF THE ARTS

VRU involved:

- Total collisions 240
- Injury 172
 - Pedestrian involved 117
 - Cyclists involved 55


Vulnerable Road User (VRU) Collision Frequency Contd.

Incidents are concentrated during afternoon and early evening hours

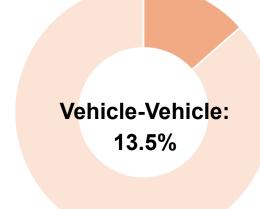
PORT MOODY
CITY OF THE ARTS

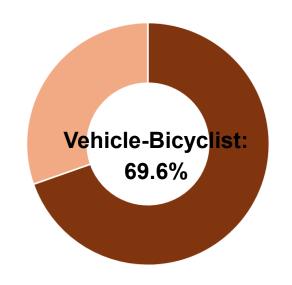
Collisions are more common on weekdays

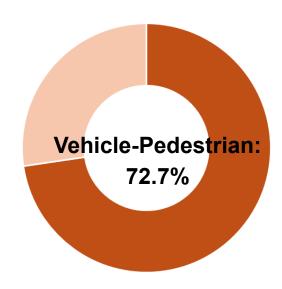
Road-user Involvement in All Crashes vs. Injury/Fatal Crashes

All Collisions (n=14,395)

Vehicles 98.3%, pedestrians 1.1%, bicyclists 0.5%

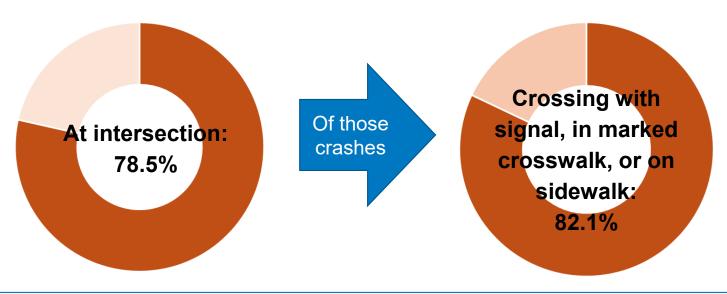

Serious Injury/Fatal Collisions (n=2,086)


Vehicles 91.8%, pedestrians 5.6%, bicyclists 2.6%



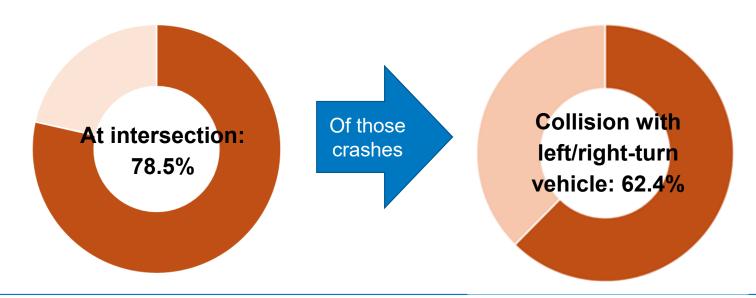
Higher Chances of Injury / Death for Vulnerable Users

 Significantly higher chances of injury or death for pedestrians and cyclists, compared to people in vehicles, if struck by another vehicle



VRU Collisions are Occurring at Intersections

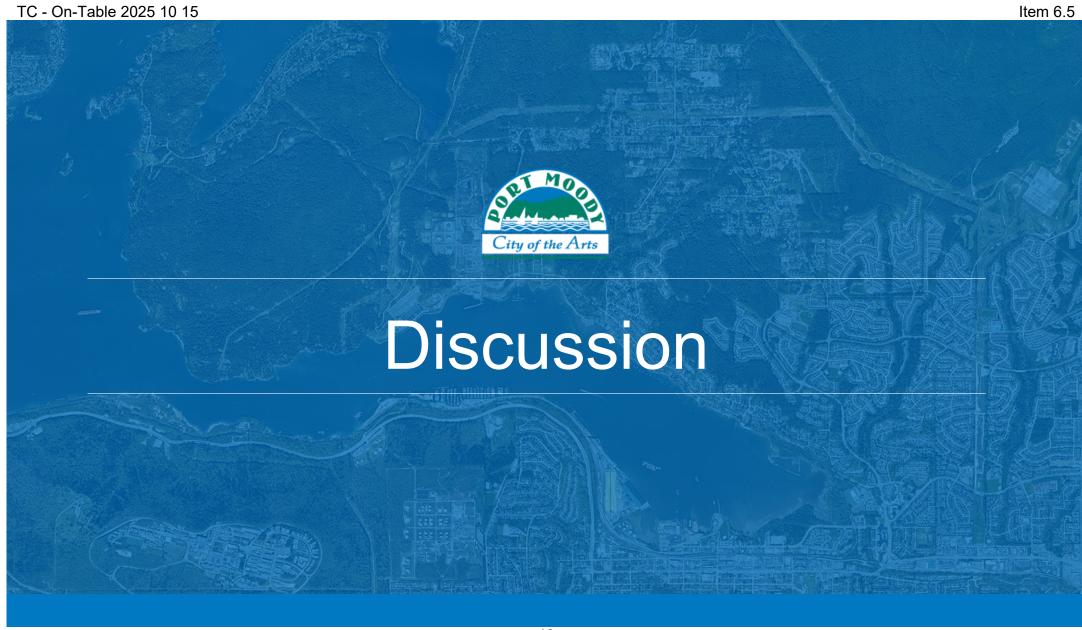
 Most collisions with pedestrians and cyclists are occurring at intersections


 In a large majority of these collisions, the pedestrian was crossing during a walk signal, crossing in a marked crosswalk, or on the

sidewalk

VRU Collisions are Occurring at Intersections Contd.

- Most collisions with pedestrians and cyclists are occurring at intersections
- Majority of these collisions, the conflict involves with a left- or rightturning vehicle



Suggested Motion

THAT the Transportation Committee recommends:

THAT Council direct staff to conduct a comprehensive road safety assessment that integrates data analysis, site evaluations, and stakeholder engagement; identify, screen, and rank priority locations for safety improvements; develop recommended countermeasures with planning-level cost estimates; and report back with an implementation plan for inclusion in the City's next five-year Capital Program.

